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ABSTRACT

This paper deals with an inverse model of a planar
manipulator with two links, one rigid link and the
other is elastic. The model of the inverse kinematics
and the inverse dynamics for a trajectory and force
control of the manipulator is proposed. In the model,
the equations for the elastic deformations of the elas-
tic link are formulated as boundary value problems.
The model proposed does not include any iteration
processes. The accuracy of the model is checked nu-
merically.

INTRODUCTION

Many researches on motion control of mechanical
systems composed of rigid and elastic bodies have
been proposed so far. One basic method to con-
trol the motion of a non-linear mechanical system is
the computed torque method. The computed torque
method is composed of two steps. The first step is
called inverse kinematics; When some state variables
of the system are given as functions of time, it is
to calculate the values of the rest state variables of
the system. The second step is called inverse dy-
namics; When the motion of the system is given,
control forces(torques) to actuators are calculated to
realize the given motion. As the models for the in-
verse dynamics, dynamic equations are used. And
the inputs are the state variables as time functions
and outputs are the control forces (torques). On the
other hand, the models for the inverse kinematics
are generally derived from the kinetic equations of
the system. But, there are some systems in which
the basic equations can’t be derived from only the
kinetic equations. A mechanical system composed of
rigid and elastic bodies is a typical example of this
class of mechanical system. In this case, we have to
derive the models by using dynamic equations as well
as kinetic ones. So, the basic problems of the inverse
kinematics of this class of mechanical system is how
to derive the model by using kinetic and dynamic
equations and how to solve it ([1] ~ [5]).

In this paper, we will take up a planar two-link ma-
nipulator with a force sensor on the end effector as
one example of this class of mechanical system. The
first link of the manipulator is a rigid link and the
other is composed of a elastic beam and rigid ome.
We proposed a model and an algorithm of the inverse
kinematics and dynamics of the system for trajectory
and force control. The dynamic equations of the sys-
tem are derived by the use of the D’Alembert princi-
ple where the motion of the second and third links are
modeled by the finite element method. The models
of the inverse kinematics are derived by the dynamic
equations of the system and the kinetic equation of
the end effector where the inputs are the trajectory
of the end effector and the force acting on the end
effector and outputs are the trajectory of the joints
and the vibrations of the second link. The crucial
point of the model is that since the equations of
the elastic vibration of the second link become to
be ill-posed as the initial value problems they are
reformulated as the boundary value problems. The
algorithm based on the model does not involve any
iteration processes. The model of the inverse dynam-
ics are derived by dynamic equations of the system
where the inputs are the motion of the system and
the outputs are the torques of the motors installed
at the joints. In this case, since the models of the
inverse dynamics have no solutions, the torques of
the motors are given as solutions of the models with
the least squared errors.

Numerical simulations are implemented to verify the
efficiency of the proposed model and algorithm.

EQUATIONS OF MOTION

Consider a manipulator composed of two links, link
1, 2 (Figure 1 ). Link 1 is put on a base with a rotary
joint (joint 1) , link 2 is connected to link 1 with a
rotary joint (joint 2). Link 1 is a rigid rod and link
2 is composed of a elastic beam and a rigid part. A
rigid part of link 2 is connected to the elastic part
with a rotary joint (joint 3). Motors are installed



at the rotary joint 1,2 and 3, the axes of which are
perpendicular to a vertical plane. Motors of joint
1 and 2 generate control torques to control the tra-
jectory of the manipulator. On the other hand, the
motor of joint 3 acts as a rotary passive compliance
and also is able to generate control torque to con-
trol the force acting on the end effector. The elastic
deformations of link 2 occur in a plane perpendicu-
lar to the axis of rotation. Introduce a set of unit
vectors {a(®} = {a(o) a(QO),a3 )} fixed in an iner-
tia space, the origin of which coincides with joint 1.

(0)

Vector ay

vector a(o) is set downward A set of unit vectors

{a( )} = {a( 2 a2 ,a )} (i =1,2) is introduced, the
(i )

origin of which coincides with joint ¢. Vector a3’ co-
incides with the axis of rotation of joint ¢ and vector

(2)

a;’ is set toward the axis of link 3.

coincides with the axis of rotation and

Using a set of
unit vectors {a(?}, a column matrix is introduced,

a2 ,a3)] (1)

[a]" = [a}"

FIGURE 1: Two link manipulator system

A transformation matrix from {a?)} to {a(?} is de-
fined by A9 (i, =0,1,2)

[a(i)] = AG9) [a(j)]
cos ﬁgij ) sin Hgij )0
Al = —sin Géij) cos Géij) 0 @)
0 0 1

where, G(i 7 is angle of rotation from {a/)} to {a()}
(J)

about ay’’ axis.

The angular velocity vector of {a()} to {a(?)} is de-
fined by w(%)

W) —
WUiT

[a(i)]Tw(ij)
$(39) (3)
[0,0,657]
The following quantities are introduced,
r(M) = [aM]T+(); a distance vector from joint 1 to
joint 2.
; a distance vector from joint 2 to
the end effector.
; a distance vector from joint 2 to
joint 3.
p{9; a distance vector from joint i to
any position in link .
The elastic deformation of link 2 is denoted by w(?

() = [a@)]T7(2)

R® = [a®]TR®)

p) = [a)]T

w? =

[a(2)]Tw(2)
w@T  — (2) (4)

0, ws?(t, p{7), 0]

By using the finite element method, the elastic de-
(2)( (2)

formation wy (¢, p; ') is expressed as

wP(t, pi*) = B@ (P (¢) (5)

Where the rigid part of link 2 is considered as one of
the finite elements of link 2 as well as elastic part by
selecting appropriate test functions corresponding to
rigid mode.

A distance vector (! from joint 1 to any point in
link 1 is expressed as

2D = [aM]Tx
VIR

and the velocity vector v(1) is expressed as

v = [aM])Tp(™)
(6)
o) = 1) (10)
where,
0 i) =t
P = —p(gl) 0 pgl)
o) —pl 0

On the other hand, a distance vector (2 from joint

1 to any point in link 2 is expressed as
22 = [a(2)]Tx(2)

2@ = 4.1 4 (p(2) + w(2))
and the velocity vector v(?) is expressed as

3 =
32 =

LRI
ACD j(1)4,(10) (7)

+{p@w) 4+ B@(p{* )i (2)( )}



A state variable z of the system is set to be

2T =, 620 @7 8)

The equations of motion for stable variable z are de-

(10) and

rived as follows; The equations for variables 6,

0&21) are derived from the equations of the angular
momenta of link 1 and link 2 about joint 1 and joint
2, respectively.

d <p£1)T (1)>( )+ <ﬁ£1)T&(10)TU(1)>(1)

di
_ DT f0) _ (0T _ 0T) 402) 4(2)
(D) L 402) ) )
di < ﬁ<2>TU<2>>(2) N < ﬁ<2>T@<zo>TU<2>>(z)
t C C
_HRIT f2) _ ()T _ {2)T) 4(20) f(6)
(2)
+7 (10)
where,
A = p D)
RO 1(4) / pOFmC
m K3
<x >0 = /*dm(i)

m() is mass of link 4, f(i) = [@D)Tf®) and 7() =
[@T7() are a force and a torque acting on link
at joint 7, and f¢) = [@O]T f(¢) is a force acting on
the surface of the object through the end effector.
The torques 7 (i = 1,2,3) are divided into two
parts.

£ — 7_( 04 7_( i)

where *4 indicates the desired feedforward torue and
*rp feedback one.
The forces f(1) and f(?) are expressed as

PO 5t< (1>>” (10)T<v(1)>(1)
Cm( A0 4 A02) )
(11)
o = dt<<2>>(’ (20)T<v(2)>(2) B

—m(2) A0 1 A(20) £(e)

where g is a gravitational constant. The equations of
282 are derived from the equa-
tions of elastic v1brat10ns of link 2

% <B(2)Tv(2)>(2) +( B<2)T@<20>Tv<2)>(2>

:< <2>T> A0 g _ K52

_24(2)\/< BT RB2) >(2) K(2) 1'17(2)
+EOT(0)r® 4+ EOT(R) D (12)

motion for variables

where, the second and third terms in the right hand
side of Eq. (12) express an elastic restoring force and
a structural damping force, respectively. The torque
7(3) is divided into a passive compliance torque and
an active control torque to control the force acting on
the end effector. In Eq. (12), the passive torque TI(;‘L)?
is included as a elastic restoring force of one finite
element of link 2. On the other hand, the active
control torque 7'513) is included as the 5th term in the

right hand side of Eq. (12).

0 0 0
E®0) = |0 0 0
[ 10 0

K 0

E@(RY) 0 0
L0 0

INVERSE MODEL

It is assumed that a desired trajectory :Z:Eie)(t) =
O] 2
Fi) =

ject through the end effector are given.

of the end effector and a desired force
[a(o)]Tft(ie) acting on the surface of an ob-
The in-
verse kinematics is to calculate the angles of rota-
tion 0(10)( t) and 9&21)(75) and the elastic deformations
wg)(t) corresponding to the desired trajectory and
the desired force. First, the distance vector @(¢) of
the end effector from joint 1 is expressed as

2 = [a®]Tg®
20— A01,.01) 4 4(02),(2) (13)

Substituting the desired trajectory :c( ) into Eq. (13),
we obtain the equation to determine the angles of ro-

tation 0&130), 9(21).
ZBEiel) = r(Mcos 9(10) + 1732 cos 0(20) (14)
xfg = rMsin 0(10) +r@gin 9(20)

Next, substituting the desired force f(e) and the an-

gles of rotation 0(%0), 9(21) into Eq. (12) using Eq.
(10), we obtain the equatlon to determine the elastic

deformations w( )( t).

M@ @y + 2<<2>\/ < BPTBY - k@ &)
{1 @) g

(92 cos 9(20) rﬁ”w%o)z sin 0(21)

600 cos62) < BPT >

T Wys
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m(2)r£2) {T(l) (cos 0(21)(41&3 + sin 9(21)w§130)2)
+7"£2)df5i:230)} - m(2)92r£2) cos 0&230)
+T(2)fc(t cos 9(20)] E§2)T(O)

<BPTBY > - < PP >

(15)
M@ =

[pgz), 0, ---, 0]. And the control

is neglected in order to derive the inverse

where, Céz) =
torque 7'(53)
model.

Equation (15) is a set of second order ordinary dif-
ferential equations and are appropriate to be formu-
lated as initial value problem with the initial condi-

tions

However, since the coeflicient matrix of @g) is not
positive definite, Eq. (15) are not well posed as ini-
tial value problems. Here, Eq. (15) are formulated
as boundary value problems with the boundary con-
ditions

&) =0
) =0

t=20 (16)
t=1y

where, t; is a time interval of manipulation.

As boundary value problems, we can obtain stable

solutions numerically, but the elastic deformations

123&22) obtained have certain velocities at the beginning

of manipulation.

On the other hand, when the angle of rotation 9(10)( t)

and 6231)( t) and elastic deformations wg)(t) are ob-
tained, the inverse dynamics is to calculate the torques

1 and 72

and 7;”’ which realize the desired motions. First,

the variables v(l) and 11(2)

10 21
(10) (21

are calculated by using the

variables 6 and w(2)

U((il) _ [N)(l)w((iw)

v((f) _ A(21)~(1)w(10)

( )
(17)

nd f($2)(t) are calculated by

+w (20)T( 2 4 B 2)w(2)) + B®@g

Then, the forces f;l)(t) a
using Eq. (11).

d () _a0)T (2)
B = ) o ()
—m® AR g 4 A(Qo)ft(ie)
d (1) (1) (18)
(1) a4 /. (1) ~(20)T / (1)
1= ) e ()

2
—m() A(10) g 4 A(lz)ft(i )

(1)

Finally, the torques 7, () are calculated by

substituting the variables v( 2) , fa 1) and f

and T

into

the variables vV, v(2)| f(1) and £(2) in Eqs. (9),(10).
But, the solutions T( ) and Tc(lz) which satisfy Eqgs.
(9),(10) exactly do not exist and so, the solutions
with the least squared errors are used as the models
of the desired torques Tc(ll) and 7'52) as
2 d /. 2)\(? ()T ~ (20T (2)\?
Tcg ) _ == <p(2)T Ez)> n <p£2)Tw; ) vfi )>
+;£2)Tf( ) ( (2)T _ (2)T) A(Zo)fc(ie)
W _ 4/ or, 0\ /oo (0T, (1) (1)
T <p > +< >
7~"£1)ch(11)+ (f(l)T 1)T) (12)f(2)

+A(12)TL(12)

(19)
are calculated by using

(1) (2)

The torques 7, ' and 7,

elastic deformations w( ) Since elastic deformations

o (

wdz) have certain Velomtles at ¢t = 0 and t;. The
torques T(gl) and 'rr(iz) have impulsive components at
t = 0 and ty. This means that impulsive torques act
on the system at the beginning of manipulation. The
impulsive torque may excite higher modes of vibra-
tion which are not included in the inverse model, and
this results in degradation of the performance of ma-
nipulation. Hence, the trajectory of the end effector
must be designed not to excite the parasitic modes
of vibration and this will be examined numerically
in the following section.

NUMERICAL SIMULATION

Here, inverse models proposed in the previous sec-
tion are verified numerically; The desired trajectory
of the end effector x((ie) and the desired force fz(ie)
acting on the surface of the object are given and the
torques 'r(gl) and 7(52)
tion are calculated on the basis of the inverse models
proposed. Then, the equations of motion of the ma-
nipulator are solved numerically where the torques
obtained are used as the input torques, and the tra-
jectory of the end effector z(¢) and the force f(¢)
acting on the surface are compared with the desired
trajectory of the end effector and the desired force
acting on the surface. The values of parameters of
the manipulator are listed in Table 1.

which realize the desired mo-

TABLE 1
| | Link 1 | Link 2
Length [m] 0.500 0.400
Mass [kg] 8.00 0.240
Bending Stiffness[Nm?] - 0.550
Damping Ratio - 5.00 E-02




Natural Frequencies of link 2 are 2.4291 [Hz] (1st
mode), 19.1016 [Hz] (2nd mode), 40.8210 [Hz] (3rd
mode), 48.4743 [Hz] (4th mode), 115.7262 [Hz] (5th
mode), 287.9078 [Hz] (6th mode), - - -

Link 2 is modeled as three finite elements for the
inverse models (N = 3) including the rigid part and
four finite elements for the numerical simulations
(Ngim = 4) also including the rigid part of link 2;
From 1st mode of vibration to 6th modes of vibration
are included in inverse models, while from 1st mode
of vibration to 8th mode of vibration are included in
the models of simulation. The desired trajectory of
the end effector and the desired force acting on the
surface are given as follows,

175;2) = 0.7 [m]
fi = 20 [N|

:vffl) = 0.7 — 0.5(—252t"" 4 1386t"° — 3080¢°
+3465(° — 1980¢" + 462{°) [m]

where, t = t/ty.

The magnitudes of the velocities of the elastic defor-
mations at the beginning of manipulation is propor-
tional to the rates of acceleration of the end effector
and so, in order to suppress the excitations of the
modes of vibration, the end effector must be acceler-
ated slowly.

Figure 2 shows the force acting on the surface of
the object through the end effector. In figure 2, the
impulsive torques are omitted.

5.00 T T

Simulation ——

Desired -
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FIGURE 2: The force acting on the surface

ty = 0.5 [sec],without impulsive components

Figure 3 shows the difference between the desired
forces ft(i;) and the forces f2(e) acting actually on
the surface obtained by the numerical simulations
as function of the time interval of manipulation ¢y.
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FIGURE 3: Difference between forces
i) and 115,
ty = 0.5 [sec] without impulsive components

The figures show that the performances of manip-
ulation are improved rapidly as the manipulator is
accelerated slowly at the beginning of manipulation.
Finally, figure 4 shows the stick diagrams of manip-
ulator during manipulation

I I I I I |
-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

X (m)

FIGURE 4: Stick diagram of the manipulator
t; = 0.5 [sec], without impulsive components

CONCLUSION

The models of the inverse kinematics and the inverse
dynamics of a manipulator with elastic links for a tra-
jectory and force control are derived. In the models,
the equations for the elastic deformations of the elas-
tic links are formulated as not initial value problems
but boundary value problems. The elastic deforma-
tions obtained have velocities at the beginning and
the end of manipulation and, as a result, the torques
calculated include impulsive torques at the beginning
and the end of manipulation. The models do not in-
clude any iteration processes. The performances of
the proposed models are checked by the numerical
simulations.
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APPENDIX
Link 2 is divided into N +1 finite elements where are
numbered as 1,2, ---,N from joint 2 to joint 3 and

N +1 from joint 3 to the end effector. The nodes are
also numbered as 0,1,- - -,N +1 from joint 2 to the end
effector. The model of an elastic deformation of the
elastic part of link 2 is assumed as Euler-Bernoulli’s
beam model and the other rigid part of link 2 is used
spring-mass system model. The deformation in ele-
ment n,wé?r)t is expressed as

(2) (2)

w2,n(t7p1 ):
@é(?n)_l(n
~1(2
- = 1| B )
bpoy U, b, b 2n1 (20)
| ! 0
Dy ()

where, forn =1,---, N

T 0o 3 o 3 /‘3223

bn,1 = T, — l—2213n + l—BZEn 5 bn = 12 T, — l—BZEn
=~ 2 1 =~ 1 1
byy = Tp-— 7352 + l—gxi . by = —730% + l—zxi
0 ;O<p§2)<(n—1)l
T, = p?) —m=1 ;(n=-1l< p?) <nl
0 jnl < p(12)
2

N

forn=N+1
Dy = anp— (5 = RY)
0 .0 < p” <R
TN+1 = p(12) — R(12) ;R(12) < p(12) < r§2)
0 ;7“52) < pgz)

~(2)

Wy, elastic deformation of element n at node n

'(2)

W, : angle of rotation of element n at node n
At nodes 0 and N + 1, we may set the condition that

ﬁ’\((JQ) = @%11 =0

Then, an elastic deformation in link 2 is expressed as

wi? (t, 07 = BA () e @) (21)

where,

BY =% b v By By |

U C B )

Wy N Wo N

~1(2)
Wy N+1 ]



